练习题
对于每个级数:
i) 写出级数中的每一项
ii) 因此求出级数的值
a) \(\sum_{r=1}^{5} (3r + 1)\)
b) \(\sum_{r=1}^{6} 3r^2\)
c) \(\sum_{r=1}^{5} \sin(90r°)\)
d) \(\sum_{r=5}^{8} 2(-\frac{1}{3})^r\)
a) \(\sum_{r=1}^{5} (3r + 1)\)
i) 各项:\(4, 7, 10, 13, 16\)
ii) 这是一个等差数列,首项 \(a = 4\),公差 \(d = 3\),项数 \(n = 5\)
\(S_5 = \frac{5}{2}(2 \times 4 + (5-1) \times 3) = \frac{5}{2}(8 + 12) = \frac{5}{2} \times 20 = 50\)
b) \(\sum_{r=1}^{6} 3r^2\)
i) 各项:\(3, 12, 27, 48, 75, 108\)
ii) \(S = 3 + 12 + 27 + 48 + 75 + 108 = 273\)
c) \(\sum_{r=1}^{5} \sin(90r°)\)
i) 各项:\(\sin(90°), \sin(180°), \sin(270°), \sin(360°), \sin(450°)\)
即:\(1, 0, -1, 0, 1\)
ii) \(S = 1 + 0 + (-1) + 0 + 1 = 1\)
d) \(\sum_{r=5}^{8} 2(-\frac{1}{3})^r\)
i) 各项:\(2(-\frac{1}{3})^5, 2(-\frac{1}{3})^6, 2(-\frac{1}{3})^7, 2(-\frac{1}{3})^8\)
即:\(-\frac{2}{243}, \frac{2}{729}, -\frac{2}{2187}, \frac{2}{6561}\)
ii) \(S = -\frac{2}{243} + \frac{2}{729} - \frac{2}{2187} + \frac{2}{6561} = -\frac{16}{6561}\)
对于每个级数:
i) 用求和记号表示级数
ii) 求出级数的值
a) \(2 + 4 + 6 + 8\)
b) \(2 + 6 + 18 + 54 + 162\)
c) \(6 + 4.5 + 3 + 1.5 + 0 - 1.5\)
a) \(2 + 4 + 6 + 8\)
i) \(\sum_{r=1}^{4} 2r\)
ii) 这是一个等差数列,首项 \(a = 2\),公差 \(d = 2\),项数 \(n = 4\)
\(S_4 = \frac{4}{2}(2 \times 2 + (4-1) \times 2) = 2(4 + 6) = 20\)
b) \(2 + 6 + 18 + 54 + 162\)
i) \(\sum_{r=1}^{5} 2 \times 3^{r-1}\)
ii) 这是一个等比数列,首项 \(a = 2\),公比 \(r = 3\),项数 \(n = 5\)
\(S_5 = \frac{2(3^5 - 1)}{3 - 1} = \frac{2(243 - 1)}{2} = 242\)
c) \(6 + 4.5 + 3 + 1.5 + 0 - 1.5\)
i) \(\sum_{r=1}^{6} 6 - 1.5(r-1)\)
ii) 这是一个等差数列,首项 \(a = 6\),公差 \(d = -1.5\),项数 \(n = 6\)
\(S_6 = \frac{6}{2}(2 \times 6 + (6-1) \times (-1.5)) = 3(12 - 7.5) = 3 \times 4.5 = 13.5\)
计算 \(\sum_{r=1}^{20} (4r + 1)\)
这是一个等差数列的求和:
\(\sum_{r=1}^{20} (4r + 1) = 5 + 9 + 13 + ... + 81\)
首项 \(a = 5\),公差 \(d = 4\),项数 \(n = 20\)
使用等差数列求和公式:
\(S = \frac{n}{2}(2a + (n-1)d)\)
\(S = \frac{20}{2}(2 \times 5 + (20-1) \times 4)\)
\(S = 10(10 + 19 \times 4) = 10(10 + 76) = 10 \times 86 = 860\)
计算 \(\sum_{k=1}^{12} 5 \times 3^{k-1}\)
这是一个等比数列的求和:
\(\sum_{k=1}^{12} 5 \times 3^{k-1} = 5 + 15 + 45 + ...\)
首项 \(a = 5\),公比 \(r = 3\),项数 \(n = 12\)
使用等比数列求和公式:
\(S_n = \frac{a(r^n - 1)}{r - 1}\)
\(S_{12} = \frac{5(3^{12} - 1)}{3 - 1} = \frac{5(531441 - 1)}{2} = \frac{5 \times 531440}{2} = 1328600\)
计算 \(\sum_{k=5}^{12} 5 \times 3^{k-1}\)
这个求和可以从第5项开始,我们可以用以下方法计算:
\(\sum_{k=5}^{12} 5 \times 3^{k-1} = \sum_{k=1}^{12} 5 \times 3^{k-1} - \sum_{k=1}^{4} 5 \times 3^{k-1}\)
从题目4已知:\(\sum_{k=1}^{12} 5 \times 3^{k-1} = 1328600\)
计算前4项的和:
\(\sum_{k=1}^{4} 5 \times 3^{k-1} = \frac{5(3^4 - 1)}{3 - 1} = \frac{5(81 - 1)}{2} = \frac{5 \times 80}{2} = 200\)
所以:\(\sum_{k=5}^{12} 5 \times 3^{k-1} = 1328600 - 200 = 1328400\)
计算 \(\sum_{r=3}^{7} (5 \times 2^r)\)
将 \(r = 3, 4, 5, 6, 7\) 分别代入表达式:
\(\sum_{r=3}^{7} (5 \times 2^r) = 5 \times 2^3 + 5 \times 2^4 + 5 \times 2^5 + 5 \times 2^6 + 5 \times 2^7\)
\(= 5 \times 8 + 5 \times 16 + 5 \times 32 + 5 \times 64 + 5 \times 128\)
\(= 40 + 80 + 160 + 320 + 640\)
\(= 1240\)
计算 \(\sum_{r=1}^{n} r^2\) 的值,其中 \(n = 10\)
使用平方和公式:
\(\sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6}\)
当 \(n = 10\) 时:
\(\sum_{r=1}^{10} r^2 = \frac{10(10+1)(2 \times 10+1)}{6} = \frac{10 \times 11 \times 21}{6} = \frac{2310}{6} = 385\)
计算 \(\sum_{r=1}^{15} (2r - 1)\)
这是一个等差数列的求和:
\(\sum_{r=1}^{15} (2r - 1) = 1 + 3 + 5 + ... + 29\)
首项 \(a = 1\),公差 \(d = 2\),项数 \(n = 15\)
使用等差数列求和公式:
\(S = \frac{n}{2}(2a + (n-1)d)\)
\(S = \frac{15}{2}(2 \times 1 + (15-1) \times 2) = \frac{15}{2}(2 + 28) = \frac{15}{2} \times 30 = 225\)
计算 \(\sum_{r=1}^{8} \frac{1}{2^r}\)
这是一个等比数列的求和:
\(\sum_{r=1}^{8} \frac{1}{2^r} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ... + \frac{1}{256}\)
首项 \(a = \frac{1}{2}\),公比 \(r = \frac{1}{2}\),项数 \(n = 8\)
使用等比数列求和公式:
\(S_n = \frac{a(1 - r^n)}{1 - r}\)
\(S_8 = \frac{\frac{1}{2}(1 - (\frac{1}{2})^8)}{1 - \frac{1}{2}} = \frac{\frac{1}{2}(1 - \frac{1}{256})}{\frac{1}{2}} = 1 - \frac{1}{256} = \frac{255}{256}\)
在解决求和记号问题时,要特别注意:
1. 正确理解求和记号的符号表示
2. 注意求和变量的取值范围
3. 识别被求和表达式的类型
4. 选择合适的求和公式
5. 部分求和可以通过整体求和减去前面部分来计算